31/03/96 10:27
u_iadro.lek
Морис Дж. Бах (Maurice J. Bach) "THE DESIGN OF THE
UNIX OPERATING SYSTEM" Copyright c 1986 Корпорация
Bell Telephone Laboratories. Перевод с
английского к.т.н. Крюкова А.В.
Введение в архитектуру Ядра операционной системы.
Cлева изображена файловая подсистема, а справа подсистема управления процессами, ДВЕ ГЛАВНЫЕ КОМПОНЕНТЫ ЯДРА. Эта схема дает логическое представление о ядре, хотя в действительности в структуре ядра имеются отклонения от модели, поскольку отдельные модули испытывают внутреннее воздействие со стороны других модулей.
Схема имеет три уровня:
уровень пользователя,
уровень ядра
уровень аппаратуры.
Обращения к операционной системе и библиотеки составляют границу между пользовательскими программами и ядром. Обращения к операционной системе выглядят так же, как обычные вызовы функций в программах на языке Си, и библиотеки устанавливают соответствие между этими вызовами функций и элементарными системными операциями.
При этом программы на ассемблере могут обращаться к операционной системе непосредственно, без использования библиотеки системных вызовов. Программы часто обращаются к другим библиотекам, таким как библиотека стандартных подпрограмм ввода-вывода, достигая тем самым более полного использования системных услуг. Для этого во время компиляции библиотеки связываются с программами и частично включаются в программу пользователя.
На рисунке совокупность обращений к операционной системе разделена на те обращения, которые взаимодействуют с подсистемой управления файлами, и те, которые взаимодействуют с подсистемой управления процессами.
Файловая подсистема управляет файлами:
размещает записи файлов,
управляет свободным пространством,
доступом к файлам и поиском данных для пользователей.
Процессы взаимодействуют с подсистемой управления файлами, используя при этом совокупность специальных обращений к операционной системе, таких как open, close, read, write, stat (запросить атрибуты файла), chown (изменить запись с информацией о владельце файла) и chmod (изменить права доступа к файлу).
Подсистема управления файлами обращается к данным, которые хранятся в файле, используя буферный механизм, управляющий потоком данных между ядром и устройствами внешней памяти. Буферный механизм, взаимодействуя с драйверами устройств ввода-вывода блоками, инициирует передачу данных к ядру и обратно.
Драйверы устройств являются такими модулями в составе ядра, которые управляют работой периферийных устройств. Устройства ввода-вывода блоками относятся к типу запоминающих устройств с произвольной выборкой; их драйверы построены таким образом, что все остальные компоненты системы воспринимают эти устройства как запоминающие устройства с произвольной выборкой. Подсистема управления файлами также непосредственно взаимодействует с драйверами устройств "неструктурированного" ввода-вывода, без вмешательства буферного механизма. К устройствам неструктурированного ввода-вывода, иногда именуемым устройствами посимвольного ввода-вывода (текстовыми), относятся устройства, отличные от устройств ввода-вывода блоками.
Подсистема управления процессами отвечает за синхронизацию процессов, взаимодействие процессов, распределение памяти и планирование выполнения процессов. Подсистема управления файлами и подсистема управления процессами взаимодействуют между собой, когда файл загружается в память на выполнение подсистема управления процессами читает в память исполняемые файлы перед тем, как их выполнить.
Примерами обращений к операционной системе, используемых при управлении процессами, могут служить fork (создание нового процесса), exec (наложение образа программы на выполняемый процесс), exit (завершение выполнения процесса), wait (синхронизация продолжения выполнения основного процесса с моментом выхода из порожденного процесса), brk (управление размером памяти, выделенной процессу) и signal (управление реакцией процесса на возникновение экстраординарных событий).
Модуль распределения памяти контролирует выделение памяти процессам. Если в какой-то момент система испытывает недостаток в физической памяти для запуска всех процессов, ядро пересылает процессы между основной и внешней памятью с тем, чтобы все процессы имели возможность выполняться.
Имеются два способа управления распределением памяти: выгрузка (подкачка) и замещение страниц. Программу подкачки иногда называют ПЛАНИРОВЩИКОМ, т.к. она "планирует" выделение памяти процессам и оказывает влияние на работу планировщика центрального процессора. В дальнейшем этот модуль будет упоминаться как "программа подкачки", чтобы избежать путаницы с планировщиком центрального процессора.
Модуль
"планировщик" распределяет
между процессами время
центрального процессора. Он
планирует очередность выполнения
процессов до тех пор, пока они
добровольно не освободят
центральный процессор, дождавшись
выделения к.-л. ресурса, или до тех
пор, пока ядро системы не выгрузит
их после того, как их время
выполнения превысит заранее
определенный квант времени.
Планировщик выбирает на выполнение
готовый к запуску процесс с
наивысшим приоритетом; выполнение
предыдущего процесса
(приостановленного) будет
продолжено тогда, когда его
приоритет будет наивысшим среди
приоритетов всех готовых к запуску
процессов.
Существует несколько форм взаимодействия процессов между собой, от асинхронного обмена сигналами о событиях до синхронного обмена сообщениями.
Наконец, аппаратный контроль отвечает за обработку прерываний и за связь с машиной. Такие устройства, как диски и терминалы, могут прерывать работу центрального процессора во время выполнения процесса. При этом ядро системы после обработки прерывания может возобновить выполнение прерванного процесса. Прерывания обрабатываются не самими процессами, а специальными функциями ядра системы, перечисленными в контексте выполняемого процесса.
ОСНОВНЫЕ ПОНЯТИЯ СИСТЕМЫ
Обзор особенностей подсистемы управления файлами
Внутреннее представление файла описывается в индексе, который содержит описание размещения информации файла на диске и другую информацию, такую как владелец файла, права доступа к файлу и время доступа. Термин "индекс" (inode) широко используется в литературе по системе UNIX.
Каждый файл имеет один индекс, но может быть связан с несколькими именами, которые все отражаются в индексе. Каждое имя является указателем. Когда процесс обращается к файлу по имени, ядро системы анализирует по очереди каждую компоненту имени файла, проверяя права процесса на просмотр входящих в путь поиска каталогов, и в конце концов возвращает индекс файла.
Например, если процесс обращается к системе:
open("/fs2/mjb/rje/sourcefile", 1); ядро системы возвращает индекс для файла "/fs2/mjb/rje/sourcefile".
Если процесс создает новый файл, ядро присваивает этому файлу неиспользуемый индекс. Индексы хранятся в файловой системе, однако при обработке файлов ядро заносит их в таблицу индексов в оперативной памяти.
Ядро поддерживает еще две информационные структуры, таблицу файлов и пользовательскую таблицу дескрипторов файла.
Таблица файлов выступает глобальной структурой ядра, а пользовательская таблица дескрипторов файла выделяется под процесс. Если процесс открывает или создает файл, ядро выделяет в каждой таблице элемент, корреспондирующий с индексом файла.
Элементы в этих трех структурах - в пользовательской таблице дескрипторов файла, в таблице файлов и в таблице индексов - хранят информацию о состоянии файла и о доступе пользователей к нему.
В таблице файлов хранится смещение в байтах от начала файла до того места, откуда начнет выполняться следующая команда пользователя read или write, а также информация о правах доступа к открываемому процессу.
Таблица дескрипторов файла идентифицирует все открытые для процесса файлы. На Рисунке показаны эти таблицы и связи между ними.
В системных операциях open (открыть) и creat (создать) ядро возвращает дескриптор файла, которому соответствует указатель в таблице дескрипторов файла. При выполнении операций read (читать) и write (писать) ядро использует дескриптор файла для входа в таблицу дескрипторов и, следуя указателям на таблицу файлов и на таблицу индексов, находит информацию в файле.
Рисунок. Таблицы файлов, дескрипторов файла и индексов
В системе может быть несколько физических дисков, на каждом из которых может размещаться одна и более файловых систем. Разбивка диска на несколько файловых систем облегчает администратору управление хранимыми данными.
На логическом уровне ядро имеет дело с файловыми системами, а не с дисками, при этом каждая система трактуется как логическое устройство, идентифицируемое номером. Преобразование адресов логического устройства (файловой системы) в адреса физического устройства (диска) и обратно выполняется дисковым драйвером.
Файловая система состоит из последовательности логических блоков длиной 512, 1024, 2048 или другого числа байт, кратного 512, в зависимости от реализации системы. Размер логического блока внутри одной файловой системы постоянен, но может варьироваться в разных файловых системах в данной конфигурации. Использование логических блоков большого размера увеличивает скорость передачи данных между диском и памятью, поскольку ядро сможет передать больше информации за одну дисковую операцию, и сокращает количество продолжительных операций.
Однако, если размер логического блока слишком велик, полезный объем памяти может уменьшиться. Для простоты термин "блок" будет использоваться для обозначения логического блока, при этом подразумевается логический блок размером 1 Кбайт, кроме специально оговоренных случаев.
Рисунок. Формат файловой системы.
Файловая система имеет следующую структуру:
Блок загрузки располагается в начале пространства, отведенного под файловую систему, обычно в первом секторе, и содержит программу начальной загрузки, которая считывается в машину при загрузке или инициализации операционной системы. Хотя для запуска системы требуется только один блок загрузки, каждая файловая система имеет свой (пусть даже пустой) блок загрузки.
Суперблок описывает состояние файловой системы - какого она размера, сколько файлов может в ней храниться, где располагается свободное пространство, доступное для файловой системы, и другая информация.
Список
индексов в файловой системе
располагается вслед за
суперблоком.
Администраторы указывают
размер списка индексов при
генерации файловой системы.
Ядро операционной системы
обращается к индексам,
используя указатели в списке
индексов. Один из индексов
является корневым индексом
файловой системы: это индекс,
по которому осуществляется
доступ к структуре каталогов
файловой системы после
выполнения системной операции
mount (монтировать).
Информационные блоки располагаются сразу после списка индексов и содержат данные файлов и управляющие данные. Отдельно взятый информационный блок может принадлежать одному и только одному файлу в файловой системе.
Процессы.
С практической точки зрения процесс в системе UNIX является объектом, создаваемым в результате выполнения системной операции fork. Каждый процесс, за исключением нулевого, порождается в результате запуска другим процессом операции fork. Процесс, запустивший операцию fork, называется РОДИТЕЛЬСКИМ, а вновь созданный процесс - ПОРОЖДЕННЫМ. Каждый процесс имеет одного родителя, но может породить много процессов. Ядро системы идентифицирует каждый процесс по его номеру, который называется ИДЕНТИФИКАТОРОМ ПРОЦЕССА (PID).
Нулевой процесс является особенным процессом, который создается "вручную" в результате загрузки системы; после порождения нового процесса (процесс 1) нулевой процесс становится ПРОЦЕССОМ ПОКАЧКИ. Процесс 1, известный под именем init, является предком любого другого процесса в системе и связан с каждым процессом особым образом.
Пользователь,транслируя исходный текст программы, создает исполняемый файл, который состоит из нескольких частей:
набора "заголовков", описывающих атрибуты файла,
текста программы,
представления на машинном языке данных, имеющих начальные значения при запуске программы на выполнение, и указания на то, сколько пространства памяти ядро системы выделит под неинациализированные данные, так называемые bss ("block started by symbol" - "блок, начинающийся с символа") (ядро устанавливает их в 0 в момент запуска),
других секций, таких как информация символических таблиц.
Ядро загружает исполняемый файл в память при выполнении системной операции exec, при этом загруженный процесс состоит по меньшей мере из трех частей, так называемых областей: текста, данных и стека.
Области текста и данных корреспондируют с секциями текста и bss-данных исполняемого файла, а область стека создается автоматически и ее размер динамически устанавливается ядром системы во время выполнения.
Стек состоит из логических записей активации, помещаемых в стек при вызове функции и выталкиваемых из стека при возврате управления в вызвавшую процедуру; специальный регистр, именуемый указателем вершины стека, показывает текущую глубину стека. Запись активации включает параметры передаваемые функции, ее локальные переменные, а также данные, необходимые для восстановления предыдущей записи активации, в том числе значения счетчика команд и указателя вершины стека в момент вызова функции.
Текст программы включает последовательности команд, управляющие увеличением стека, а ядро системы выделяет, если нужно, место под стек.
Рисунок. Программа копирования файла
Поскольку процесс в системе UNIX может выполняться в двух режимах, режиме ядра или режиме задачи, он пользуется в каждом из этих режимов отдельным стеком. Стек задачи содержит аргументы, локальные переменные и другую информацию относительно функций, выполняемых в режиме задачи. Слева на Рисунке показан стек задачи для процесса, связанного с выполнением системной операции write в программе copy. Процедура запуска процесса (включенная в библиотеку) обратилась к функции main с передачей ей двух параметров, поместив в стек задачи запись 1; в записи 1 есть место для двух локальных переменных функции main. Функция main затем вызывает функцию copy с передачей ей двух параметров, old и new, и помещает в стек задачи запись 2; в записи 2 есть место для локальной переменной count. Наконец, процесс активизирует системную операцию write, вызвав библиотечную функцию с тем же именем. Каждой системной операции соответствует точка входа в библиотеке системных операций; библиотека системных операций написана на языке ассемблера и включает специальные команды прерывания, которые, выполняясь порождают "прерывание", вызывающее переключение аппаратуры в режим ядра.
Процесс ищет в библиотеке точку входа, соответствующую отдельной системной операции, подобно тому, как он вызывает любую из функций, создавая при этом для библиотечной функции запись активации. Когда процесс выполняет специальную инструкцию, он переключается в режим ядра, выполняет операции ядра и использует стек ядра.
Стек ядра содержит записи активации для функций, выполняющихся в режиме ядра. Элементы функций и данных в стеке ядра соответствуют функциям и данным, относящимся к ядру, но не к программе пользователя, тем не менее, конструкция стека ядра подобна конструкции стека задачи. Стек ядра для процесса пуст, если процесс выполняется в режиме задачи. Справа на Рисунке представлен стек ядра для процесса выполнения системной операции write в программе copy.
Рисунок. Стеки задачи и ядра для программы копирования.
Каждому процессу соответствует точка входа в таблице процессов ядра, кроме того, каждому процессу выделяется часть оперативной памяти, отведенная под задачу пользователя. Таблица процессов включает в себя указатели на промежуточную таблицу областей процессов, точки входа в которую служат в качестве указателей на собственно таблицу областей.
ОБЛАСТЬЮ называется непрерывная зона адресного пространства, выделяемая процессу для размещения текста, данных и стека. Точки входа в таблицу областей описывают атрибуты области, как например, хранятся ли в области текст программы или данные, закрытая ли эта область или же совместно используемая, и где конкретно в памяти размещается содержимое области.
Внешний уровень косвенной адресации (через промежуточную таблицу областей, используемых процессами, к собственно таблице областей) позволяет независимым процессам совместно использовать области. Когда процесс запускает системную операцию exec (наложение образа программы на выполняемый процесс), ядро системы выделяет области под ее текст, данные и стек, освобождая старые области, которые использовались процессом. Если процесс запускает операцию fork (создание нового процесса), ядро удваивает размер адресного пространства старого процесса, позволяя процессам совместно использовать области, когда это возможно, и, с другой стороны, производя физическое копирование. Если процесс запускает операцию exit (завершение выполненния процесса), ядро освобождает области, которые использовались процессом.
Рисунок. Информационные структуры для процессов.
Рисунке изображены информационные структуры, связанные с запуском процесса. Таблица процессов ссылается на промежуточную таблицу областей, используемых процессом, в которой содержатся указатели на записи в собственно таблице областей, соответствующие областям для текста, данных и стека процесса.
Запись в таблице процессов и часть адресного пространства задачи, выделенная процессу, содержат управляющую информацию и данные о состоянии процесса. Это адресное пространство является расширением соответствующей записи в таблице процессов.
В качестве полей в таблице процессов выступают:
поле состояния,
идентификаторы, которые характеризуют пользователя, являющегося владельцем процесса (код пользователя или UID),
значение дескриптора события, когда процесс приостановлен (находится в состоянии "сна").
Адресное пространство задачи, выделенное процессу, содержит описывающую процесс информацию, доступ к которой должен обеспечиваться только во время выполнения процесса. Важными полями являются:
указатель на позицию в таблице процессов, соответствующую текущему процессу,
параметры текущей системной операции, возвращаемые значения и коды ошибок,
дескрипторы файла для всех открытых файлов,
внутренние параметры ввода-вывода,
текущий каталог и текущий корень,
границы файлов и процесса.
Ядро системы имеет непосредственный доступ к полям адресного пространства задачи, выделенного выполняемому процессу, но не имеет доступ к соответствующим полям других процессов. С точки зрения внутреннего алгоритма, при обращении к адресному пространству задачи, выделенному выполняемому процессу, ядро ссылается на структурную переменную и, когда запускается на выполнение другой процесс, ядро перенастраивает виртуальные адреса таким образом, чтобы структурная переменная u указывала бы на адресное пространство задачи для нового процесса.
В системной реализации предусмотрено облегчение идентификации текущего процесса благодаря наличию указателя на соответствующую запись в таблице процессов из адресного пространства задачи.
Контекст процесса
Контекстом процесса является его состояние, определяемое текстом, значениями глобальных переменных пользователя и информационными структурами, значениями используемых машинных регистров, значениями, хранимыми в позиции таблицы процессов и в адресном пространстве задачи, а также содержимым стеков задачи и ядра, относящихся к данному процессу.
Текст операций системы и ее глобальные информационные структуры совместно используются всеми процессами, но не являются составной частью контекста процесса. Говорят, что при запуске процесса СИСТЕМА ИСПОЛНЯЕТСЯ В КОНТЕКСТЕ процесса. Когда ядро системы решает запустить другой процесс, оно выполняет переключение контекста с тем, чтобы система исполнялась в контексте другого процесса. Ядро осуществляет переключение контекста только при определенных условиях. Выполняя переключение контекста, ядро сохраняет информацию, достаточную для того, чтобы позднее переключиться вновь на первый процесс и возобновить его выполнение. Аналогичным образом, при переходе из режима задачи в режим ядра, ядро системы сохраняет информацию, достаточную для того, чтобы позднее вернуться в режим задачи и продолжить выполнение с прерванного места. Однако, переход из режима задачи в режим ядра является сменой режима, но не переключением контекста.
Ядро обрабатывает прерывания в контексте прерванного процесса, пусть даже оно и не вызывало никакого прерывания. Прерванный процесс мог при этом выполняться как в режиме задачи, так и в режиме ядра. Ядро сохраняет информацию, достаточную для того, чтобы можно было позже возобновить выполнение прерванного процесса, и обрабатывает прерывание в режиме ядра.
Ядро не порождает и не планирует порождение какого-то особого процесса по обработке прерываний.
Состояния процесса
Время жизни процесса можно разделить на несколько состояний, каждое изкоторых имеет определенные характеристики, описывающие процесс.
Некоторые состояния процеса:
1. Процесс выполняется в режиме задачи.
2. Процесс выполняется в режиме ядра.
3. Процесс не выполняется, но готов к выполнению и ждет, когда планировщик выберет его. В этом состоянии может находиться много процессов, и алгоритм планирования устанавливает, какой из процессов будет выполняться следующим.
4. Процесс приостановлен ("спит"). Процесс "впадает в сон", когда он не может больше продолжать выполнение, например, когда ждет завершения ввода-вывода.
Поскольку процессор в каждый момент времени выполняет только один процесс, в состояниях 1 и 2 может находиться самое большее один процесс. Эти два состояния соответствуют двум режимам выполнения, режиму задачи и режиму ядра.
Переходы из состояния в состояние Диаграмма переходов представляет собой ориентированный граф, вершины которого представляют собой состояния, в которые может перейти процесс, а дугие события, являющиеся причинами перехода процесса из одного состояния в другое. Переход между двумя состояниями разрешен, если существует дуга из первого состояния во второе. Несколько дуг может выходить из одного состояния, однако процесс переходит только по одной из них в зависимости от того, какое событие произошло в системе. На Рисунке представлена диаграмма переходов для состояний, перечисленных выше.
Рисунок. Состояния процесса и переходы между ними
Ядро разрешает переключение контекста только тогда, когда процесс переходит из состояния "запуск в режиме ядра" в состояние "сна в памяти". Процессы, запущенные в режиме ядра, не могут быть выгружены другими процессами; поэтому иногда говорят, что ядро невыгружаемо, при этом процессы, находящиеся в режиме задачи, могут выгружаться системой. Ядро поддерживает целостность своих информационных структур, поскольку оно невыгружаемо, таким образом решая проблему "взаимного исключения" - обеспечения того, что критические секции программы выполняются в каждый момент времени в рамках самое большее одного процесса.
Ядро также повышает приоритет прерывания процессора на время выполнения критических секций программ, запрещая таким образом прерывания, которые в противном случае могут вызвать нарушение целостности.
Планировщик процессов периодически выгружает процессы, выполняющиеся в режиме задачи, для того, чтобы процессы не могли монопольно использовать центральный процессор.
"Сон" и пробуждение
Процессы приостанавливают свое выполнение, потому что они ожидают возникновения некоторого события, например, завершения ввода-вывода на периферийном устройстве, выделения системных ресурсов и т.д. Одновременно могут приостановиться по событию много процессов; когда событие наступает, все процессы, приостановленные по событию, пробуждаются, поскольку значение условия, связанного с событием, больше не является "истинным".
Когда процесс пробуждается, он переходит из состояния "сна" в состояние "готовности к выполнению", находясь в котором он уже может быть выбран планировщиком; следует обратить внимание на то, что он не выполняется немедленно. Приостановленные процессы не занимают центральный процессор.
Ядру системы нет надобности постоянно проверять то, что процесс все еще приостановлен, т.к. ожидает наступления события, и затем будить его.
СТРУКТУРЫ ДАННЫХ ЯДРА
Большинство информационных структур ядра размещается в таблицах фиксированного размера, а не в динамически выделенной памяти. Преимущество такого подхода состоит в том, что программа ядра проста, но в ней ограничивается число элементов информационной структуры до значения, предварительно заданного при генерации системы. Если во время функционирования системы число элементов информационной структуры ядра выйдет за указанное значение, ядро не сможет динамически выделить место для новых элементов и должно сообщить об ошибке пользователю, сделавшему запрос.
Если, с другой стороны, ядро сгенерировано таким образом, что выход за границы табличного пространства будет маловероятен, дополнительное табличное пространство может не понадобиться, поскольку оно не может быть использовано для других целей. Как бы то ни было, простота алгоритмов ядра представляется более важной, чем сжатие последних байтов оперативной памяти. Обычно в алгоритмах для поиска свободных мест в таблицах используются несложные циклы и этот метод более понятен и иногда более эффективен по сравнению с более сложными схемами выделения памяти.
УПРАВЛЕНИЕ СИСТЕМОЙ
К управляющим
процессам относятся те процессы,
которые выполняют различные
функции по обеспечению
благополучной работы
пользователей системы.
К таким функциям относятся
форматирование дисков, создание
новых файловых систем,
восстановление разрушенных
файловых систем, отладка ядра и др.
С концептуальной точки зрения, между управляющими и пользовательскими процессами нет разницы. Они используют один и тот же набор обращений к операционной системе, доступный для всех. Управляющие процессы отличаются от обычных пользовательских процессов только правами и привилегиями, которыми они обладают.
Внутри системы ядро выделяет особого пользователя, именуемого суперпользователем, и наделяет его особыми привилегиями. Пользователь может стать суперпользователем, если соответствующим образом зарегистрируется в системе или запустит специальную программу.
Если сказать коротко, ядро системы не выделяет управляющие процессы в отдельный класс.